书中文学网

手机浏览器扫描二维码访问

第1264章(第3页)

他指出强相互作用的粒子应满足SU(3)对称性,在数学上对应的是SU(3)群。

考虑到某些笨……咳咳,奔着掌握知识来的同学的阅读需求,这里再简单解释一下几个群的概念:

在粒子物理中。

SU(1),SU(2),SU(3)这三个群是必须要掌握的基础。

SU(1),SU(2),SU(3)在数学角度来看都是李群,从物理角度来看是是对系统施加一种变换,让系统在这种变换下具有某种不变形。

这三个群在数学上作为李群都是自己的几何结构,可以想象它们都是光滑的几何体,有自己的维数。

这个维数在数学角度来看是切空间的维数,可以具体地计算出来,例如SU(2)是3维的,SU(3)是8维的。

这个维数有非常明确的物理意义,就是在相互作用中媒介子的维数,或者说媒介子的种类。

例如电磁相互作用的媒介子只有一种就是光子,于是可以它对应的规范场就是U(1)。

而弱相互作用的媒介子有三种W+,W-,Z,于是就可以推测它对于的规范场是SU(2),因为SU(2)是3维的。

也就是……

电磁力对应U(1)群,弱相互作用力对应SU(2)群,强相互作用力对应SU(3)群。

而SU(3)群中呢,又有一个8维表示,也就是八个生成元。

所以八重法就是指每8个有类似性质的粒子能填入SU(3)群的8维表示中,它把有相近性质的强作用基本粒子分成一个个族,并认为每个族成员应有8个。

粒子物理中的什么介子八重态啦、重子八重态啦都是八重法的范畴,后来还拓展到了十重态。

所以你看到的X子X重态,本质上都是八重法的衍生。

当然了。

眼下这个时期八重法的争议性还很大,因此很快便有专家提出了不同的看法:

“SU3群?洪元同志,按照你的意思,所谓的元强子不是一个两个,而是八个?”

“如果有这么多的所谓元强子存在,那么CP破缺性质要如何解决?——最简单的一个问题,在这种情境下,同态映射的核在数学上岂不是得是二对一了?”

开口的这位学者叫做王竹溪,也是一位华夏知名的物理学家,华夏第一批学部委员。

不过王竹溪之前工作的方向主要偏教育端,和朱洪元的交集并不算深。

听到王竹溪的疑问,朱洪元却微微笑了笑:

“竹溪同志,你的这个问题我能解答。”

只见他从一旁的桌上拿起了纸和笔,飞快的在桌上边写边解释了起来:

“竹溪同志,同态映射的本质其实就是幺正矩阵的映射验证,只要能证明SO(3)群的元素都可以映射到行列式为1的2X2矩阵D1/2(α,βγ)上就可以了。”

“根据SU(2)群和SO(3)群的定义,SO(3):={O∈GL(3,R)|OTO=13,det(O)=1},SU(2):={U∈GL(2,C)|UfU=12,det(U)=1}。”

“接着找一个三维矢量vv=(v1,v2,v3),可以利用泡利矩阵将其映射成一个2×2无迹厄米矩阵,即vv→rr=viσi=(v3v1-iv2v1+iv2-v3),这个映射的逆映射为vi=12tr[σirr],并且有det(rr)=-|vv|2,以及12tr(rr2)=|vv|2……”

“这个无迹厄米矩阵可以表示SU(2)群上的代数,那么SU(2)群在这个代数上的伴随作用为rr=urruf.其中u∈SU(2)……”

“那么诱导出一个在三维实矢量空间的表示,v′i=12tr(σirr′)=12tr(σiuσjuf)vj,v′i=Rji(u)vj,因此,Rji(u)=12tr(σiuσjuf)……”

“如此一来,只要证明R(u)∈SO(3)就行了,我们的思路是……”

看着洋洋洒洒大书特书的朱洪元,徐云的脸上也忍不住露出了一丝微妙。

这算是巧合吗?

美食小娇娘:成为皇商从卖包子开始  开局爆料香江首富喜当爹[九零]  绯色轨迹  重生九零后被高冷军官霸道宠  南朝小道士  美人有亿点强,不过分吧  战神妈咪美又飒  重生1987,我的老爹是港城首富  炮灰白月光狂pua,男主们暗爽  开局一座核心舱  半路抢的夫君他不对劲  舰娘作战手册  全城笑我守活寡,皇帝跪求我改嫁  我一保安让女总裁怀孕很合理吧叶云苏珊徐钰儿全集免费阅读  第一女婿  玄幻:方家老祖  登雀枝安芷裴阙  老师乖,你的学生看上你了  星际:最强机甲师  一心向上  

热门小说推荐
凌天至尊

凌天至尊

最强系统,我就是最强!还有谁?叶风看着众多的天骄,脸色淡定无比!获得最强系统,经验可复制对方的功法神通,可升级功法神通品阶无所不能,唯有最强!碾压苍穹,打爆世间一切不服者!...

大国工程

大国工程

余庆阳一个搬砖二十年的老工程,梦回世纪之交,海河大学毕业,接老爸的班继续搬砖。用两辈子的行动告诉老师,搬砖不是因为我学习不好!是我命中注定要搬砖已有两本百万字完本书超级村主任最强退伍兵,可以放心入坑!大国工程书友群,群聊号码492691021新书重生之大国工匠...

每日热搜小说推荐