书中文学网

手机浏览器扫描二维码访问

第五百九十三章 高斯-博内-陈定理曲面几何(第1页)

1827年,高斯证明了这一定理。

1944年,博内将这一定理推广到一般曲面上,由任一闭曲线C围成的单连通区域,形成了着名的高斯-博内公式.

1944年,陈省身给出了高斯-博内公式的内藴证明.

欧拉数虽然神秘有趣,可还是引不起数学家们的强烈兴趣,原因是它太简单了,小学生都可以很快弄懂这些数的来源,那个时代的数学家们总是希望有个积分,微分什么的,以显示其高深莫测,高斯那时候正在研究曲面和曲线的几何学,对于各种曲率玩得和吃饭喝水似的,这个时候人们还没有意识到弯曲可以是几何的内蕴性质,而一般考虑嵌入曲率,第一个认识到弯曲可以不需要嵌入的人是黎曼.

某天,对于没有边界的二维曲面,高斯搞了一个曲率做了一个积分,他发现,他能够计算出欧拉数!很快他把这个公式推广到带边界(二维面上有洞的情形)的二维曲面,同样得到了相应的欧拉数.

高斯当时应该是没有认识到这个公式的巨大作用,以至于他懒得去发表这样的结果,他认为这种工作对他而言太简单了,只和弟子们稍微讨论了一下,然后,就转去研究别的东西去了,可见这些宗师级的人物也有走眼的时候,几年以后,博内得到了同样的结果.

令人兴奋的是,我们导出黎曼曲率的途径,还能够让我们一瞥高斯-博内公式的风采,真正体验一番研究内蕴几何的味道.

高斯-博内公式是大范围微分几何学的一个经典的公式,它建立了空间的局部性质和整体性质之间的联系,而我们从一条几何的路径出发,结合一些矩阵变换和数学分析的内容,逐步导出了测地线、协变导数、曲率张量,现在还可以得到经典的高斯-博内公式,可见我们在这条路上已经走得足够远了,虽然过程不尽善尽美,然而,并没有脱离这个系列的核心:几何直观.

在曲面上的形状:角差变量=曲率K上的面积大小的积分。

变化量则表示为面积分。这就是微分几何中的高斯-博内公式的主要内容,即角差等于高斯曲率的面积分,诸如球面三角形的内角和等内容都与它有关,它是整体微分几何的开山之作之一

喜欢数学心请大家收藏:()数学心

一本杂录  沉睡千年醒来,749局找上门  都市重生:我在七日世界刷神宠  造孽啊,曹贼竟是我自己  大清话事人  神奇宝贝:开局十连抽,获得梦幻  开局成为峰主,打造万古不朽仙门  高冷学神之攻略手册  邪灵战神  在明末奋斗  柯南!快看,你爸爸过来了!  剑神韩友平第一部  跨越阶层的恋爱  包青天断案传奇故事汇  尘封的仙路  春过辽河滩  开局被渣,反手投资女帝无敌  仙骨  偏偏宠上你  好运撞末日  

热门小说推荐
漫兽竞技场

漫兽竞技场

一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...

太古神王

太古神王

玄幻爽文九天大陆,天穹之上有九条星河,亿万星辰,皆为武命星辰,武道之人,可沟通星辰,觉醒星魂,成武命修士。传说,九天大陆最为厉害的武修,每突破一个境界,便能开辟一扇星门,从而沟通一颗星辰,直至,让九重天上,都有自己的武命星辰,化身通天彻地的太古神王。亿万生灵诸天万界,秦问天笑看苍天,他要做天空,最亮的那颗星辰...

每日热搜小说推荐